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Chiral and continuous symmetry of an X Y  spin glass on a 
tube lattice 
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Labomtoire de Physique Theorique et Hautes Energies (CNRS-LIRA 63) Bitiment 211, 
Universite de Paris-Sud, F-91405 Onay Cedex. France 

Received 1 May 1995 

Abstract. We analyse the chiral symmetry in the random fJ XY model on a N x 2 square 
lattice with @odic boundary conditions in the transverse direction. This 'tube' lattice may be 
seen as a two-dimensional lattice of which one dimension has been compactified. In the W a i n  
formulation the discrete-valued chirolities or charges associated with the plaquettes ofthe lattice 
decauple from the continuous degrees of freedom. The difficulty of the problem lies in the fact 
that the chiralities interact through the long-range 'suong' one-dimensional Coulomb potential- 
which increases linearly with distance-as well as through an exponentially decaying 'weak' 
interaction. By comparing the ground-stare energies for periodic, antiperiodic and reflecting 
Lmundary conditions in the longitudinal direction, we show that the chiralities and the XY 
spins have the ~ a m e  zero-T correlation length exponent, whose exact value v, = 0.5564.. . we 
determine. The equality of these correlation lengths even in the presence of long-range chirality- 
chirality interactions lends support to the view that chiral-glass order cannot be sustained without 
simultaneous spin-glass order 

1. Introduction 

We present a study of the interplay between the spin variables and the chiral variables 
(chiralities) in the i J  XY spin glass. The former correspond to the continuous rotational 
symmetry of this model, and the latter to its discrete chiral symmetry (i.e. the invariance 
of the model Hamiltonian under reflection of all the spins with respect to a reference axis), 
first pointed out by Villain [I-31. Below the lower critical dimension, de, which is believed 
to be greater than 2 141, the correlation lengths associated with the chiralities and with the 
spin variables diverge as T-"r and Tu,, respectively, at the zero-temperature (T) critical 
point. The question of the relation between the two types of variable has become of interest 
following speculations by Kawamura and Tanemura 151, by Ray and Moore [6] and by 
Kawamura [7], prompted by Monte Carlo simulations, that below de, the two correlation 
lengths are different, with U, > U,. This suggests that the chiralities will order more easily 
than the spins in higher dimensions. Consequently, above de there would be a regime of 
dimensions with long-range chiral-glass order, but without conventional spin-glass order. 
This possibility receives intuitive support from the idea that discrete symmetry leads to 
long-range order more easily than continuous symmetry does. 

Two recent publications [S, 91 address this issue analytically. Both these studies, just l i e  
the Monte Carlo work in [5,,6], consider the finite-size scaling of the ground-state energy 
differences between periodic (P), antiperiodic (AP)  and reflecting (R) boundary conditions. 

t Permanent address: Labomtoire de Physique, Ecole Normale Sup6rieure. F-69364 Lyon Cedex 07, France. 
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In one of them, Ney-Nifle and Hilhorst [9] transform the two-dimensional XY &.I spin glass 
on a finite N x M square lattice into a grand-canonical Coulomb gas problem of which, as 
is well known, the logarithmically interacting charges represent the chiral variables. The 
charges must take half-integer values on the fmstrated plaquettes and therefore cannot vanish 
even in the ground state. In the case of uncorrelated disorder, the plaquettes are randomly 
and independently frustrated with probability i, and it is not possible to find the ground 
state explicitly. For that reason, the subsequent analytic treatment of [9] remains restricted 
to the example of a rectangular array of frustrated plaquettes with randomly distributed 
intercolumn distances. In this example, the authors find no evidence for a chiral correlation 
length diverging faster than the spin correlation length. By a heuristic argument they extend 
this conclusion to the case of uncorrelated f J  disorder. 

In an earlier investigation, Ney-N&e ef a1 [8] considered the random f J  XY model on 
a one-dimensional ladder lattice, again in the Coulomb gas representation. This problem is 
exactly solvable, or nearly so, for general disorder, and the conclusions drawn from it are 
fully coherent with those from the two-dimensional model [9]. However, this model suffers 
from the drawback that, in the Coulomb gas language, it has only exponentially decaying 
electrostatic interactions (for reasons explained in that work), so that one may wonder if an 
essential ingredient of the difficult two-dimensional problem has not been lost. 

In the present work, we reconcile the requirements of exact solvability and truly long- 
range interactions between the chiralities by studying the f J  XY spin glass on a N x 2 
lattice which is periodic both in the longitudinal and the transverse direction. We work again 
in the Coulomb gas representation, and apply different boundary conditions. In section 2, we 
show that, on this two-dimensional lattice with one compactified dimension, the electrostatic 
interaction decomposes into two components. The first one is a ‘strong’ or chargecharge 
interaction; it is nothing but the one-dimensional Coulomb potential, which increases linearly 
with distance. The second one is a ‘weak’ interaction: it acts between transversely oriented 
‘dipoles’ and decays exponentially with distance. We shall refer to them as the Coulomb 
and the dipolar interaction, respectively. The Coulomb gas representation of the XY model 
Hamiltonian involves, in addition to these two interactions, two supplementary ’global’ 
terms that couple the system’s total electric dipole moment to the boundary conditions 
imposed on the Hamiltonian. These extra terms have drawn a certain attention in the recent 
literature [8-IO], and they play again an important role here. 

We are not able to solve the ground-state problem for the complete Hamiltonian. 
However, we are able to conclude that in the large N limit, whatever the boundary 
conditions, the ground state is one of the infinitely many ground states of the ‘strong’ 
Coulomb interaction combined with one of the global terms. The details of the proof (largely 
technical in nature) of this fact are given in appendix A. This set of ground states consists, 
roughly speaking, of charge configurations in which the long-range Coulomb interaction is 
screened away as much as possible by the formation of longitudinally oriented dipoles, as 
exhibited in section 3. The degeneracy within this set is lifted by the weak interaction and 
by the second global term, which are therefore responsible for the selection of the ground 
state of the full Hamiltonian and for the energy differences between P, AP, and R boundary 
conditions. Even though we remain unable to say which member of this set is selected as the 
true ground state, we are able to describe (in section 4) the domain walls and domain wall 
energies involved in passing from one boundary condition to another. Using the relation 
between the correlation lengths and the finite-size scaling exponent of the ground-state 
energy differences, we conclude in the final section 5, for the first time within an XY spin 
glass with random r t J  disorder and having a non-trivial long-range interaction between its 
chiralities, that the spin and the chiral correlation len,ghs diverge, for T -+ 0, with the 
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sane exponent v. We determine its exact value, U = logY'(3 + 2&) = 0.5564.. ., in 
appendix B. 
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with probability 4 
x with probability 4. 

The partition function is 

The sum in the exponential in (2.2) runs over all nearest-neighbour bonds of the periodic 
lattice with the convention that in (i, j )  the site j is to the right of i (for a horizontal bond) 
or above i (for a vertical bond). In our notation the site ve,ctors i = (ix, iy) have half-integer 
components i, = i, $, . . . , and i, = ?, ?, . . . , - 

Since we are interested in the ground-state properties of the model, we shall replace 
(2.2) by the corresponding Villain expression, which is believed to be equivalent to (2.2) in 

2N-1 I 3  2M-l 
2 '  
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the large-p limit [I, 21. and is easier to analyse. The Villain partition function is 

M J Thill et a1 

where the q j  are additional dynamical variables. These nij are integers and the sum on 
them ensures that the intengad has period 2ir in $y - @I. In the following, we set J = 2. 

For each plaquette of the lattice, we define a frustration variable p r ,  with r = (x, y) a 
vector with integer components x = 1,. . . , N and y = 1 , .  . . , M that labels the centres of 
the plaquettes, 

(2.4) 

where the sum is restricted to the bonds that define the plaquette r. In (2.4), E& = -1 
or 1 depending on whether one runs through the comers of the triangle ( i j r )  clockwise 
or counterclockwise. The frustration variable is integer for nonlfrustrated plaquettes and 
half-integer otherwise. 

In (2.3) one can integrate on the continuous degrees of freedom. The algebra (cf 
[l, 2,8,9]) includes the transformation from the variables nij to the new discrete variables 
qr called the ‘chiralities’ of the plaquettes. The chirality q, runs through all integers (half- 
integers) when pT is integer (half-integer). One shows that the chiralities interact via a 
Coulomb interaction (which is why they are also called ‘charges’) and that they satisfy the 
neutrality condition 

Cqr=0. 

Recently, Ney-Nitle and Hilhorst, [9] (see also [SI) extended the mapping of the XY 
Hamiltonian onto a Coulomb gas Hamiltonian by including all the finite-size corrections on 
a N x M lattice with various boundary conditions. We will now adapt their results to the 
tube lattice, for which a simplified notation is defined in figure 1. 

2.1. Periodic boundary conditions 

We shall first consider the N x2 system with PBC in the longitudinal direction. We denote its 
partition function by Zp. Starting from the more general model ZV 191, see equation (2.3), 
we change variables from nij to the chiralities qr which allows to perform the Gaussian 
integration on the first set of variables, &. Including all numerical prefactors in ZE, one 
gets P I  

where 6(., .) denotes the Kronecker delta. The additional dynamical variables n and m run 
over all integers and the qr take integer or half-integer values, as mentioned above. The 
Hamiltonian 7&, which will be the starting point of our considerations, reads explicitly [9] 
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We will briefly discuss its meaning. The first two terms are due to the finite system size. 
They represent a coupling of the horizontal and the vertical component of the total electric 
dipole moment, respectively, to the quenched disorder. In the third term, UN.M(R) is the 
interaction between two charges: 

(2.8) 

with R = (X, U), k ,  = 0, s, . . . , and ky = 0, s, ; .:, v. The asterisk 
indicates that the term (kx,  k,) = (0,O) is left out of-the summation. 

In d = 2, UN.,+, ( N ,  M + 00) is the two-dimensional Coulomb interaction which 
varies as a logarithm at large distances [l, 21. For the tube, we will see in what follows that 
the compactification leads to a decomposition of UN,2 into two parts: a one-dimensional 
Coulomb interaction that increases linearly with distance and an exponentially decreasing 
interaction, which is a remnant of a two-dimensional dipole-dipole interaction. The 
appearence of the linear Coulomb interaction and its competition with the dipolar interaction 
makes the model interesting. 

To separate these two interactions in U N $  we combine the two chiralities of a column 
X a S  

Introducing 4,’ and 4; in (2.7) and evaluating (2.8) for N + 00 in these new variables, 
we get 

(2.10) 

We find that the charges 4: interact via the long-range periodized Coulomb potential 

If 1x1 is negligible with respect to N ,  @(X) is the usual one-dimensional Coulomb 
interaction, linear in X. If not, the term 1 - IXl/N becomes important and reflects the 
symmehy and periodicity of the lattice. 

The charges q; interact via a short-range (dipolar) potential 
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where d ( x ,  x’) is the length of the shortest path between x and x‘, taking into account the 
periodic geometry. Furthermore, one obtains from the calculation that both potentials have 
the symmetry properties 

M J Thill et a1 

(2.13) 

Because of the range of the interactions, we will also call the long-range Coulomb interaction 
between the charges q: strong interaction and the short-range (dipolar) interaction between 
the charges q; weak interaction. In the large N limit, for convenience, we rewrite the 
Coulomb interaction term in (Z.lO), using (2.11) and charge neutrality, as 

r2 4,’QUpt(X - x’) = - K 2  Ix - x’lq,+qS 2 - ( &:)z. (2.14) 

Inserting this expression in (2.10) and witing out also the interaction potentials U; 
explicitly, we obtain eventually 

2 n 2  

N 

N N 

X=l X . X k 1  X . i = l  

(2.15) 

valid in the large N limit. The task will now be to minimize ‘Hp with respect to the four 
variables qz,  4;. m, and n in order to find its ground-state energy. This will be done in 
section 3. 

2.2. Antiperiodic boundary conditions 

Passing from PBC to antiperiodic boundary conditions (APBC) means changing the sign 
of the two horizontal bonds that belong to the plaquettes ( N .  1) and ( N ,  2). Under this 
change frustrated (unfrustrated) plaquettes remain frustrated (unfrustrated). Thus the only 
modification needed to obtain the Hamiltonian X*p for APBC is to replace q y . 1 )  by X ( N . I ) + J C  
in the first term in equation (2.15), i.e. to add in the expression between parentheses in 
that term. 

2.3. Reflecting boundary conditions 

One obtains the Hamiltonian ‘HR for the XY spin glass on an N x M lattice with reflecting 
boundary conditions (RBC) in the horizontal direction and PBC in the vertical direction by 
replacing the horizontal interactions in one single, but arbitrary column, say N ,  by 

(2.16) 

This amounts to reflecting the spins on one side of this column with respect to the reference 
axis. The ensuing modifications in passing to the Coulomb representation result in 191 

(#i + #j - 2 n n i j  - rrij)’. 
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with 

(2.18) 

and r = ( x ,  y )  labels the centres of the plaquettes on the N x M lattice as before. We do 
not recall the explicit, general, form for the potential U, here, but rather use the variables 
q: and q; defined 'in (2.9) and give the explicit expression of UR in the case of the tube 
lattice: 

where 

1x1 1x1 N + w ,  - f ixed ,O6-<1 
N N -  

(2.20) 
u ( x . x ' )  N + CO, Ix --'I fixed U,-(x - x , &  ) = -(3 - 2&)d";*') 

8 
where u ( x ,  x ' )  = - 1 if the shortest path between x and x' crosses the bond nAz (or nil), and 
u ( x ,  x ' )  = 1 otherwise. The interactions U; and U; differ furthermore in their symmetry 
properties from those of PBC in that one has now 

U:(X) = -U,'(X + N )  (2.21) 

i.e. antiperiodicity of the interaction potentials. 

2.4. The Hamiltonians in t e r m  of electricjield energy 

In this subsection, we rewrite the strong interaction part of the Hamiltonians (2.15) and 
(2.19) in terms of an electric field E,: 

x 

Ex = Eo + q$. (2.22) 
X'=l 

Ex is the electric field between x and x + 1, and EO is a constant background field whose 
value will be set later in such a way that the volume sum of the energy density Ex gives 
the Coulomb energy of the Hamiltonians. The advantage of this rewriting is clearly seen 
in appendiw A when properties of the ground states of the Hamiltonians (for large N )  are 
proven: E, is a local variable, whereas q$U;R(x - x')  involves all columns of the 
lattice. To determine the effects on the system's energy when a charge 4,: is changed in 
a given configuration is much easier in terms of the local variable Ea,, as is manifest in 
appendix A. 

Squaring (2.22) and summing over x, we get 

Using the identity 
Ix' - x" x' + x" +- 2 2 

max(x', x") = 
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and rearranging terms leads to 

The value of the constant background field EO is obtained by setting 

(2.25) 

(2.26) 

In the large N limit, this amounts to comparing the expression in (2.25) with the Coulomb 
interaction part of (2.15) and (2.19) (after insertion of (2.20)). This gives 

and the Hamiltonians read hence 

where 
0 for PBC 
1 for APBC 

JAP = 

with, from (2.6) and (2.17), 
N 

q: = 0 for 'Hp and 'HAP 
x=1 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Having established the Hamiltonians for the different boundary conditions, we are now 
ready to determine those properties of their ground-state configurations that are sufficient 
to calculate the typical energy difference between the ground-state energies for N --f CO. 

3. The ground states for the different boundary conditions 

We summarize the problem to which the preceding sections have led. Each of the three 
expressions (2.28) should now be minimized with respect to the variables n, { E x ) ,  and 
(4;). The { E x )  are defined in terms of in and (qx)  by (2.22) and (2.27), and the (4:) and 
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mentioned above.) As one sees from figure 2, e.g. from the dipole containing charges on the 
columns xt and x i ,  dipole reversals do not change the Coulomb (i.e. electric field) energy 
of the system. So, the ground state of the system is found within a set consisting of chains 
of dipoles, satisfying properties 1 and 2, degenerate in Coulomb energy. The possibility 
of columns with two identical charges leads to the partition into dipoles not being unique. 
Property 3, however, introduces a further constraint on the set among which one finds the 
ground state. Furthermore, one can easily convince oneself that this latter property implies 
that one can reach every state that satisfies properties 1 to 3 from any other such state, by 
reversals of dipoles, for m y  given partition. In particular, the ground state of the system 
differs, for large N ,  from a state as conskucted above (with the additional constraint from 
properly 3) by a reversal of dipoles. 

M J Thill et a1 

N 2- 

E, 
4 

+; .. 

c 
2: 1 

1 
_- . 

N 

Figure 3. Example of a sate with properties 1 and 2 for RBC, while Eo = 4. For RBC, proceeding 
in the constructio~ as described in the text, the last charge to be placed is of the same sign as 
the first. This is obvious from equation (2.27). E,, = -5 E,”,, @, which indicates thas in 
general, there is a surplus of two charges q(r,y) with opposite sign to Eo = *i olere Eo = i), 
to take account of the fact that for RBC the potentials U: m antiperiodic (see (2.21)). But still 
all charges. but the first and the lasf one, can be grouped into dipoles a announced in the text. 

The exact ground-state configuration remains unknown, but we know that it minimizes 
the Coulomb energy independently of the other energies involved and have characterized 
the set of Coulomb energy ground states. (Let us just point out here that, when passing from 
PBC to RBC, one conserves by virtue of (2.27) and (2.30) the property EO = 0 or EO # 0 for 
the ground states at both boundary conditions, due to the fact that (.Az + niE)/2n stays the 
same (see also appendix A, especialry equation (A.9).) So the Coulomb energy stays indeed 
the same.) The only remaining degrees of freedom in this set are the directions of single 
dipoles. The degeneracy is l i d  by the other terms in the Hamiltonians of equation (2.28), 
which fix these directions. The amount of Coulomb energy of the system with the different 
boundary conditions being the same, it is the effect of these other terms that give rise to 
the difference between ground-state energies when one varies the boundary conditions. We 
address this issue in detail in the following section. In spite of the fact that we ignore the 
exact ground-state configurations, the above properties suffice to analyse and determine the 
ground-state energy differences for N + W. 
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4. Boundary conditions and~ground-state energy differences 

4.1. Generalities 

There $+%general relation between the finite-size scaling of the energy difference, 
AE(") N~ J N - y  (where J is the energy scale), of &e ground states of a system for 
different boundary conditions and the corresponding correlation length, e(T) ,  at a finite 
temperature T .  The correlation length C(T) is set by AE(*) - k s T ,  hence 

(Let us just note here that the energy difference may be either concentrated in a domain 
wall or associated with a continuous variation of the order parameter.) 

In the Villain model, we may study the spin-spin correlation and the chuality-chirality 
correlation by applying APBC and RBC [5 ,8 ,9 ] .  So we have to calculate 

(4.2) 

where E:"), E C ) ,  and EiN) are the ground-state energies under P, AP, and R boundary 
conditions, respectively. 

In this section and in appendix B, we will call a dipoie with charges q(x.y) and q(x,,y,) 
slanted, if y # y', and horizontal,~if y = y'. (With this definition, the slanted ones include 
the vertical dipoles.) As the probability for a plaquette to be frustrated is the same for all 
plaquettes, a dipole is as likely to be slanted as horizontal. 

Furthermore, writing U -  for U; at PBC (2.12) and for U,- at RBC (2.20), the weak 
(dipolar) interaction U-(@ has the property 

m 
u-(e) > u-(e') 

e'=E+i 
(4.3) 

for all boundary conditions, so that we may approximate its effect by restricting the 
interactions of each non-zero charge q; to those with its two non-vanishing neighbouring 
charges. Upon renumbering the non-zero charges q;'on the frusfnted columns by a new 
index s = 1,2, . . . , Nc (where Ne is the total number of the frustrated columns with non-zero 
q;), we can finally rewrite the effective weak (dipolar) interaction as 

(4.4) 

where q~ ,+ l  = q1 for PBC/APBC and ~ N , + I  -q,.for RBC. The charges q,; take the values 
fi and fl, and the U, are independent quenched random interaction constants. Since in 
the set of states that we consider the Coulomb energy is boundary condition independent, 
we will deduce the energy differences, AE:) and AEL" ( N  + w), from (4.4) and from 
the global spin wave term in (2.28). The large N limit is self-understood in what follows. 

4.2. Antiperiodic boundary conditions 

The actual ground state minimizes the second and third term in Xp and XAP, equation 
(2.28), within the space of degenerate ground states of the Coulomb energy, characterized 
in the preceding section. The second term, rewritten in equation (4.4), is the weak 
interaction between the 4;. In appendix B we show that its lowest-lying~excitation lies 
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typically an energy amount - J N - y c  above the ground state, and determine the exponent 
yc = loge(3 + 2&) = 1.7972.. .. The third term is 

M J Thill et a1 

where we have used the neutrality condition to write E, q; = 2 E, q(x. l ) .  The terms in 
(4.5). of order N-I, have their origin in a global spin wave, i.e. of wavelength > N ,  which 
helps the system to adjust to its boundary conditions when there is a rotational mismatch 

One might wonder if it is always possible, by choosing n roperly, that the terms in 
(4.5) vanish in the ground state in 'Hp and/or Xu. As n + E,=, E {0,14, *l, . . .), 
this depends obviously on the number of non-zero charges qCx.1). Hence we have two cases: 

(cf [8,91). 

Ep 

(i) the number of frustrated plaquettes ( x ,  1) is even; 
(ii) the number of frustrated plaquettes ( x ,  1) is odd. 
Correspondingly: 

(4.6) 

l N  - Cq(x.1) E (o,&;, *I ,... } 
2 x=l 

2 x=l- 

case (i) 

case (ii). - I N  Cq(x.l) E (AS. 1 3  *Z,. . .) 

We investigate these cases further. 
(i) Even number of frustrated plaquettes ( x ,  I). Given the set of n(,,l) and possibly 

reversing a sequence of dipoles as in appendix B to get 4 E, q(x.l)+E, n(,.1)/2R integer for 
PBC and half-integer for APBC or vice versa, the terms in (4.5) vanish for both Hamiltonians 
by a proper choice of n. As there is a difference of $ in the term in parentheses in (4.5), 
the ground states of 'Hp and 7&p differ by a reversal of a sequence of dipoles containing 
an odd number of q(x.l) # 0, i.e. a sequence of dipoles among which an odd number is 
slanted. Hence we obtain, reinserting J ,  

A E ~ )  - ~ J N - "  case (i) (4.7) 
where the sign indicates that either state, at PBC or APBC, has the lower ground-state energy. 

(ii) Odd number of frustrated plaquettes ( x ,  1). Here, from (4.6), the terms (4.5) in 
'Hp and 'HAFIA~ are always non-zero and the optimal value of n will give an energy JnZ/4N 
irrespective of the directions of the dipoles. These will thus  be^ determined by the weak 
interaction only and be the same for both boundary conditions. The energy difference is 
hence 

A E ~ )  = o case (ii) (4.8) 
in this case. 

4.3. Reflecting bowtdnry conditions 

The ground states at PBC and RBC minimize the second and the third term in 'Hp and the 
second term in 'HR. equation (2.28), within the set of states characterized in the preceding 
section. So, again, one has to distinguish between an even and odd number of q(x.l) # 0, 
when calculating the typical ground-state energy difference. 
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(i) Even number of frustrated plaquettes ( x ,  1). We saw in section 4.2 that the term 
for PBC in (4.5) vanishes in the p u n d  state of 3 t p  and that, for half of the samples, one 
finds the~ground state at PBC by minimizing the weak (dipolar) interaction. If one changes 
to RBC for this half of the samples, while keeping the PBC ground-state configuration, one 
will almost always be able to lower the energy (note that the sign of the bond that passes 
column N ,  which is almost never the weakest one, has changed (!)): one just has to reverse 
a sequence of dipoles starting at column N in such a way that only one of the weakest 
bonds is broken. For the other half of the samples, the cancellation of,the global spin wave 
term implies a reversal of a -sequence of dipoles in the configuration aftkr minimization 
of the dipolar interaction. For these latter samples, when one changes to RBC, one has to 
reverse again the same sequence that was reversed to get the ground state at PBC. In both 
cases, this leads to 

for the difference in ground-state energies. The minus sign applies for the first half of the 
samples, the plus for the second half. 

(ii) Odd number of frustrated plaquettes (x, 1): The global spin wave term never 
vanishes in PBC, so that 

case (ii) (4.10) 

neglecting a possible contribution of order JN-Y,.  

5 . ~  Conclusion 

We have studied the XY spin glass with f J  bonds on a tube lattice. This system has 
both a continuous (spin) and a discrete (chiral) symmetry, and hence two order parameters 
play a role. Our  purpose^ was to determine the divergence, for T + 0, of the c h d  
and the spin correlation lengths, via the finite-size scaling of the ground-state energy 
differences under different boundary conditions. In the presence of two symmetries, the 
usual single-symmetry relation between the finitesize scaling exponents of the ground- 
state energy difference and the correlation length has to he extended in a non-trivial way. 
Nevertheless, the spin correlation length exponent y3 (see equation (4.1)) is given by 
the energy difference when one passes from periodic to antiperiodic boundary conditions, 

namely - JN-Y.. New boundary conditions, reflecting ones, were introduced 
[5] to determine the chirality correlation length exponent yc. 

The difficulty in performing such an analysis on a general N x M lattice is that one does 
not know how to construct the ground states of the disordered systems. The tube lattice, 
of this work, however, just as the ladder lattice studied earlier [SI, allows for a precise 
theoretical analysis of this relation. In contrast to the ladder lattice, the tube lattice still has 
long-range interactions between its chiralities, and is therefore closer to a two-dimensional 
system. 

We first apply the well known transformation [Z, 91 of the XY spin glass into a Coulomb 
gas, a system of chiral variables (also called,charges). The resulting effective Hamiltonian 
can be cast in the form (2.28) where it is the sum of three terms: 

(i) a onedimensional Coulomb interaction, linearly increasing with distance, between 
charges q:, q:, . . . ,&; in (2.28); this term has been expressed as the volume sum of the 
energy density of the electric field Ex;  

112 , 
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(ii) a 'dipolar' interaction that decreases exponentially with distance between the 

(iii) the energy of a spin wave needed to match PBC or APBC (but absent under RBC), 
and whose wavenumber depends on the total electric dipole moment. 

The third term disappears in the thermodynamic limit. Its relevance for a finite-size 
scaling analysis was f is t  pointed out by Fisher et al [lo]. Moreover, the three terms are, on 
the one hand, coupled by local constraints, that link the allowed values of q: and q; with 
the fixed values of the ferromagnetic or antiferromagnetic bonds iq, between the spins on 
the lattice, and, on the other hand, by a global constraint on the total charge (zero for PBC 
and APBC, and even or uneven for RBC). Taking these constraints into account, we identify 
the low-lying excitations of the three terms, respectively: 

~~ q:,q;. .... 4;; 

(i) Coulomb excitations that cost an energy of order J ;  
(ii) chiral excitations, obtained by reversing a sequence of chiral variables, that cost an 

(iii) global spin waves that cost an energy - J N - I .  
The & J  XY spin glass on the ladder lattice [SI consists of both interactions (ii) and (iii). 

Due to the additional long-range interaction (i), the tube is closer to the two-dimensional 
model. 

In spite of the number of interactions in competition, we were able to characterize 
and delimit the set of charge configurations, within which lies the ground state. In the 
configurations contained in this set, the chages take the values on the frustrated 
plaquettes and zero on the others, and form a chain of dipoles. 

We now give a summary of our results, and recall numerical results for comparison. 
When changing boundary conditions from PBC to APBC, or RBC, it is the excitations (ii) 
and (iii) that give both energy differences, AEi:) and A E F ) .  This implies the same 
conclusions as in 181: First, the ground state obtained with P boundary conditions can 
adjust to AF' boundary conditions via a chiral excitation, so that 

energy - JN-yr with yc = 1.7972.. :; 

The last equation contains no reference to spin waves and means that Y , ~  = ye Secondly, 
passing from P to R boundary conditions releases a global spin wave (as was first observed 
by Kawamura and Tanemura [SI in d = 2) in half of the samples, but does not do so in the 
other half. 

In d = 2, Kawamura and Tanemura performed a numerical analysis of the different 
ground-state energies of the cosine XY model. They find, as N + 60, 

21/2 

(.EL") N aN-7' yS FS 0.84 

where a and b are constants, and a new quantity, namely 

has been introduced. Thus, they get two distinct exponents ys and yc.  with Y , ~  > yc, and 
conclude that the chiralities order on a longer scale than the spin variables. 

For the tube, upon collecting our results (equations (4.7)-(4.10)), we get 

(5.4) 
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i.e. the R boundary conditions probe a global spin wave term proportional to N - l .  If 
we now conjectllre on the extrapolation of our results to d = 2, then we expect for the 
quantities of equation (5.2) that A E A ~  would yield a chiral exponent yc as in (5.1) but with 
a smaller value (since yc should vanish at some, still higher, lower critical dimension); and 
that ER would yield the spin wave exponent d - 2 = 0. Instead, in contrast, Kawamura 
and Tanemura interpret their simulation according to (5.2). We expect that simulations on 
larger 2d systems will confirm our scenario. 

Appendix A. 

In this appendix, we prove that in the large N limit the ground states of the system for the 
different boundary conditions possess the properties 1 to 3 announced in section 3. In the 
calculations, we write the expression of the weak (dipolar) interaction in its form at P B ~ A P B C  
(equation (2.12)), with again J = 2. The arguments are nevertheless readily rewritten for 
RBC, including the appropriate factors of u ( x ,  x ' )  (equation (2.20)). Furthermore, we neglect 
the global spin wave term U ( l / N )  that appears for P B ~ A P B C .  Upon proper choice of n, this 
term contributes at most z 2 / 2 N  to the ground-state energies at P B ~ A P B C ,  which is small 
for N --t CO, in comparison to the other energies involved. 

In preparation of the proofs of the ground-state properties 1 to 3, we show, in a first 
step, ~ that 

(i) in the ground state, the charges q; take values 1q;I 2 $, 
and, using (i),~ in a second step, that 

(ii) in the ground state, the charges q; take values 1q;I I 1. 

(i) In the ground state, the charges 4; take values such that 14;1 5 2. Let us look at 
Proofs of (i) and (ii). 

some sgte with charges q;.O such that 

Let qZo be a charge with lq;ol = q. For reasons of charge reversal symmetry, we may 
take qzo positive without loss of generality. 

Consider now the state in which 4;' is changed into qZo~- 2, while all other charges 
4;.O and all charges Q0 are kept unchanged. (Note that, by an appropriate change of q(x.l) 
and 4(x.2). one can add an arbitrary multiple of 2 to some charge q; without changing 4,' 
(see (2.9)).) The difference in energy AE between the (final) state, with qzo changed, and 
the initial state can readily be calculated. As the charges q$ are unchanged, it comes from 
the difference in weak interaction energy only. For qzo 2 2, one finds 

~q = max{~q;.~~) 2 2. . .  ~~ (A.!) 

We have 

and thus, summing the geometric series and using q 2 2, 
f i  
a AE I -z2 [-4(q - 1) + 4 ( A  - l)q] < 0. (-4.4) 
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So the final state is lower in energy than the initial state. Hence a state, in which q 2 2, is 
not the ground state. 

(ii) In the ground state, the charges q; take values such that 1q;I 2 1. Lct us take 
some state with charges q;.' = 0, &;, r t l ,  hi. Be n the number of charges rt;, with 
n > 0. Suppose for the moment that n < N .  There exists hence a sequence of charges 

absolute value 5 1 (i.e. [q;~l[,lq;~n,l 2 1). 
Consider now the state in which all charges 4;' = rt; in this sequence are replaced 

by ~ i ,  while all other charges q;.' and all charges are kept unchanged. As in (i), the 
difference in energy A E  between the (final) state, with the changes, and the initial state 
is due to the difference in weak (dipolar) interaction energy only. The difference AEo in 
weak interaction energy, coming from the self-interaction terms in the sum, is 
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qx,; -0 , qx,,+l,.  -.o . . , qx,,+,,-, -.O = rt; (1 2 n' 2 n)  that is enclosed between charges q;.' of 

(A.5) 
1/2 A E ~  = -2-x2n' 
8 

the one from the nearest-neighbour interaction terms is of absolute value 

V5 lAElI 5 2-x2(3 - 2&) 
8 

2 
f i  

+2-x2(3 - 2&) 
8 

while the energy difference of all other terms is of absolute value 

To obtain the last inequality, we have substituted for all charges q;. but the ones in the 
sequence, the maximal possible absolute value $ and taken all terms in the sum to be 
negative in the initial state and positive in the final state (which is obviously an upper 
bound for the energy change, but impossible to realize). The overall energy difference is 
thus 

n' A , ,  V5 JZ 2 ( 3 - 2 f i ) '  A E  5 -2-x n + --a2(3 - 2 f i ) [ 5 ( n '  - 1) + 81 + 12-x 
8 8 - ( 3 - 2 A )  (A.8) 
7 

1/2 
8 

= --x2[n'(29 - ZO& - 9 +6&1 < 0. 

Again, the energy of the final state is lower than the energy of the initial state. If n = N ,  
a similar reasoning (with n' = n = N )  leads to the same conclusion. This proves (ii). 0 

We are now prepared to show that the ground state has the properties 1 to 3, announced 
in section 3. 

1. In the gmundstate, the electricfieldsatisfies lEzl i. The constant backgroundfield 
takes values [Eo1 5 4. We first note that the electric field is constrained to be of absolute 
value 5 1 for the ground-state configuration. This can be seen as follows. From (2.28), we 
see that minimization of the Coulomb interaction part of the Hamiltonians means minimizing 
the mean square value of the local electric field Ex. This leads for all Hamiltonians to 



X Y  spin gluss on a tube lattice 4301 

for the constant background field EO. The electric field, E,. should be locally optimal, that is 
stay as close to 0 as possible. For any given state with given sets of charges {q:} and {q;}, 
one can go successively through the system, from x = 1 to x = N ,  changing, whenever 
necessary, the charges q$ in such a way that the value of the electric field is hounded in 
absolute value by 1 in the final state: at every column with no frustrated or two frustrated 
plaquettes, the change in electric field can be bounded to be 0, il by an appropriate change 
of q:, if necessary, and to be ii on every column with exactly one frustrated plaquette. 
(By the definition of 4: and q;, equation (2.9), one can add an arbitrary multiple of 2 
to some charge q: without changing q;, by an appropriate change of q ( x . ~ )  and q ( x , ~ ) . )  
Whenever one encounters a column XO,  during the above procedure, where the electric field 
jumps to a value IE,[ 2 $, one changes q: by the appropriate amount, as well as the next 
non-zero charge q:, say at x;, by the opposite amount (to conserve charge neutrality). By 
the definition of the electric field, cf equation (2:22), every time one changes the charges 
at xo and x; only, the electric field remains unchanged on columns x c xo and x 2 x;. 
So in the end, while keeping the set of charges (q;] fixed, the value of the electric field 
is bounded in absolute value by 1. In particular, the final state is lower in energy than the 
initial state. 

Let us now take a charge configuration of the system (with charges q$O, 4F.O) such 
that the electric field jumps, say at column xo. to a value [E,, I = 1, and stays at this value 
until column x; (> xo), where one finds hence the next non-zero charge 4:'. Consider the 
state in which qzo is changed by an amount of 1 to some value [E'& 5 4 and qzo by the 
opposite amount (to conserve charge neutrality), while keeping the charges q,'.' (and 4;') 
on all other columt?s fixed. We observe that, from (2.22), the electric field is unchanged 
for x c xo and x 2 3; and that by the definition of q: and q;, the charges 4;' and 
q,To changed. Anyhow, from (ii), the absolute value of the charges q; can be taken to be 
bounded by 1 in both states, as otherwise the energy of the state can still be lowered. The 
difference AEF in strong interaction energy between the final state and the initial state is 

A E ~  5 - Z & ~ X ~ - X ; [  (A.10) 

while the difference AEf in weak interaction energy is bounded by 

(A.ll) 

(The factors 2 in the last inequality stem from the fact that both the energy of the initial 
state and that of the final state enter in the difference.) Hence we get for the total energy 
difference 

23 A A- Iz2 
A E S - 2 x  -+4-z2[1+2(fi-1)]c-- 2 

4 8~~ 
(A.12) 

i.e. the energy of the final state is lower than that of the initial state. Thus [ E x [  5 i for the 
ground-state configuration. 

2. In the ground state, the charges q(x.l), q(x,z) take the values 0, zki. From (ii) and 
property 1, the absolute values of the charges on the plaquettes in the ground state are 
bounded by property 1. In the case that Ez-l = 0 in the ground state, it is easy to see from 
(ii) and property 1 that the charges q(=.,). qcX.2) on the plaquettes of column x are of value 
0, zk;: 
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Let us thus consider the case [Ex-ll = f. If there is at least one frustrated plaquette 
on column x ,  it is again obvious from (ii) and I that q ( x . ~ )  and q(x.2) are of absolute value 
5 4. Suppose now that there are two non-frustrated plaquettes on a certain column xo. 
From what we have stated at the beginning of this paragraph, it could be that there is a 
charge f l  on one of the plaquettes. Let us furthermore suppose that there is a sequence of 
columns xo, xo + 1,. . ., xo + n - 1 that carry charges q; of absolute value 1. 

If the number n of charges 4; in the sequence is even, consider the state in which all 
the charges q&x:+l, . . ..q;n+n-l are changed to 0 (this is possible as it conserves charge 
neutrality, as one convinces oneself with the help of property 1). The absolute value of 
the electric field is the same in both the initial and the final state, so that the difference in 
energy is again due to the weak interaction only: 

A E  5 - - r 2 n + 4 - - a 2 n  Jz Jz 3-2Jz =$n2n[2&-3]<.0 
8 8 1-(3-22/2) 

(A.13) 

and the energy of the final state is lower than that of the initial sate. 
In the case that n is odd, one can take n = 1 and [q;-,[,lq;+ll 9 f without loss 

of generality, in view of the preceding paragraph. Suppose first that one of the charges 
q;-l,q;+l is of absolute value f in the ground state, say q;+l and say 14(x+~.l)l = 4. Let 
us compare the energy of this state with the one in which q; is changed to 0 and q(z+l.l) 

replaced by.-q(,+l,l) (note that q; +q(x+l,l) = -qcx+1.1) from 1, so that the absolute value 
of the electric field remains unchanged and charge neutrality is conserved). Using (ii), the 
difference in energy is 

(A.14) 

Again the final state is lower in energy than the initial state. Secondly, if q;-l = q;+l = 0, 
there are again two possibilities. Either there are only non-frustrated plaquettes on the 
columns x - 1 and x + 1, or, on at least one of them, both plaquettes are frustrated, say at 
x + 1. In the last case, one has q,' =-2q(,+l,l) = -2q(,+l,z) from 1; hence changing q; 
to 0 ana q(x+I,l), q(x+l.2) to -q(x+l,l), -qw+1,2) conserves charge neutrality, the absolute 
value of the electric field and does not change q;-l = q;+l = 0. Using (ii), the energy 
difference between the final and the initial state is then 

1 
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the ones earlier in this paragraph lead again to the conclusion that a state in which there is 
a non-zero charge on a column with two non-frustrated plaquettes is not the gound.state. 

So in the ground state, the charges q(x.l), qCx,2) take the values 0, &$ only. 
3. In the ground state, the.charges .q(x.l) and q(x.z) are equal on doubly frustrated 

columns, if and only (f IE,-1 I = 4. Following exactly the same lines as for property 2, 
one shows that a state in which q(xn.l) = -q(xo,z), i.e. 1q;I = 1, on some doubly frustrated 
column n&while lExo-ll = $, is higher in energy than the one in which q(xn.l) = q(%,z); 
i.e. lq; =~01 (the appropriate change of some other charge, as in property 2, to conserve 
charge neutrality, is tacitly understood). It is evident from property 1 that, in the ground 
state, qh.1) = -4(x,.2) on some doubly frustrated column no, if E,-] = 0. 

Appendix B. 

We calculate the typical energy change in a tube of length N, in the limit N + 03, when 
a sequence of dipoles is reversed to adjust to APBC or RBC from PBC, a s  in section 4. This 
amount of energy is related to the typical length of the longest interval that contains no non- 
zero charges q; between two such (non-zero) charges. The reversals that are effectuated in 
section 4 do not necessarily involve the longest of these intervals because of the constraints: 
one must not break up a dipole, or in certain cases has to reverse not just any sequence, 
but one that contains an odd number   of slanted dipoles. Nevertheless, these reversals will 
still typically involve intervals that are of the same order as the longest interval. 

Since each plaquette is frustrated with probability 4 independently of the others, a 
tube of length N will typically contain $N non-frustrated columns, $N with one frustrated 
plaquette, and $N where both plaquettes are frustrated. From property 3 of the ground- 
state configuration, half of the doubly frustrated columns will typically contain charges that 
belong to the same dipole and the other half charges that belong to two different dipoles. 
This is due~to the fact that at a given column E, = 0 or E, = &+ (i.e. q$ integer or 
half-integer) with equal probability; in the first case, one has q; = f l ,  and in the other, 
q; ~= 0. So, there are more charges q; = 0 than there are non-frustrated columns. Since 
it is typically half of the doubly frustrated columns that give q; = 0, we see that, again 
typically, 2N of the columns carry a non-zero charge q;, while $N of the columns are 
neutral in 4;. So the number of intervals between two non-zero charges q;, that contain 
no other such (non-zero) charge, is $N. The probability p ( e )  for the two subsequent non- 
vanishing charges q; to be at a distance e (i.e. to be separated by an interval of l - 1 
columns containing no non-zero charge 4;) is 

p(L) = (a>"-' I 8 e = 1,2, .. .. (B.1) 

Let PN(m) be the probability distribution for the length m of the longest one of these 
distances. Obviously, PN(m) equals the probability that all $N intervals have length t 2 m, 
minus the probability that they all have length e 5 m - 1; explicitly 

When N is large, pN(m) will be peaked around some large value of m. Its scaling form 
can be obtained if one transforms from m to m' according to 

m = y logN + m' (3.3) 
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with y to be determined. Indeed, upon using (B.3) and (B.2), one finds 
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N - b ,  -2 t "I 

P N ( ~ )  N x(1  - x $ )  with x = e  "(t) N .  (B.4) 

m = log! N + O(1) 

This shows that P N ( ~ )  is effectively non-zero only for argument values 

03.5) 

N -+ 00 m' finite, fixed and y = I/log $. (B.6) 

and that the appropriate scaling limit reads 

Having thus obtained the typical length 

of the longest interval, we are able to determine the typical energy change of the mentioned 
dipole reversals. From the effective weak interaction (4.4) we deduce that the typical energy 
change due to such a reversal is of order cU(m), where 

U(m) = ~ ( 3  - 21/2m (B.8) 
is the energy change when breaking up a bond at distance m and the constant c is of order 
unity. The exponent yc is then obtained from the defining equation 

cU(O)N-" = cU(m) (J3.9) 
which gives 

yE = logt(3 + 2&) = 1.1912.. . 
for the exponent of the chirality4hirality correlation length 
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