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Chiral and continuous symmetry of an XY spin glass on a
tube lattice

M T Thill, M Ney-Niflef and H T Hilhorst

Laboratoire de Physique Théorique et Hautes Energies (CNRS-URA 63) Bétiment 211,
Université de Paris-Sud, F-31405 Orsay Cedex, France

Received 1 May 1995

Abstract. We analyse the chiral symmetry in the random £J XY model on a &V x 2 square
Tattice with periodic boundary conditions in the transverse direction. This ‘tube’ lattice may be
seen as a two-dimensional lattice of which one dimension has been compactified. In the Villain
formulation the discrete-valued chirafities or charges associated with the plaguettes of the lattice
decouple from the continuous degrees of freedom. The difficulty of the problem lies in the fact
that the chiralities interact through the long-range ‘strong’ one-dimensional Coulomb potential—
which increases linearly with distance—as well as through an exponentially decaying ‘weak’
interaction. By comparing the ground-state energies for periodic, antiperiodic and reflecting
boundary conditions in the longitudinal direction, we show that the chirafities and the XY
spins have the same zero-T correlation length exponent, whose exact value v, = 0.5564 ... we
determine. The equality of these correlation lengths even in the presence of long-range chirality—
chirality interactions lends support to the view that chiral-glass order cannot be sustained without
simultaneous spin-glass order.

1. Introduction

We present a study of the interplay between the spin variables and the chiral variables
(chiralities) in the £J X'¥ spin glass. The former correspond to the continuous rotational
symmetry of this model, and the latter to its discrete chiral symmetry (i.e. the invariance
of the model Hamiltonian under reflection of all the spins with respect to a reference axis),
first pointed out by Villain {1-3]. Below the lower critical dimension, d;, which is believed
to be greater than 2 [4], the correlation lengths associated with the chiralities and with the
spin variables diverge as T~ and T, respectively, at the zero-temperature (7') critical
point, The question of the relation between the two types of variable has become of interest
foliowing speculations by Kawamura and Tanemura [5], by Ray and Moore [6] and by
Kawamura [7], prompted by Monte Carlo simulations, that below dg, the two correlation
lengths are different, with v, > v;. This suggests that the chiralities will order more easily
than the spins in higher dimensions. Consequently, above d; there would be a regime of
dimensions with long-range chiral-glass order, but without conventional spin-glass order.
This possibility receives intuitive support from the idea that discrete symmetry leads to
long-range order more easily than continuous symmetry does. B

Two recent publications [8, 9] address this issue analytically. Both these studies, just like
the Monte Carlo work in [3,6], consider the finite-size scaling of the ground-state energy
differences between periodic {P), antiperiodic (AP) and reflecting (®) boundary conditions.
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In one of them, Ney-Nifle and Hilhorst [9] transform the two-dimensional XY +J spin glass
on a finite N x M square lattice into a grand-canonical Coulomb gas problem of which, as
is well known, the logarithmically interacting charges represent the chiral variables. The
charges must take half-integer values on the frustrated plaquettes and therefore cannot vanish
even in the ground state. In the case of uncorrelated disorder, the plaquettes are randomly
and independently frustrated with probability %, and it is not possible to find the ground
state explicitly. For that reason, the subsequent analytic treatment of [3] remains restricted
to the example of & rectangular array of frustrated plaquettes with randomly distributed
intercolumn distances. In this exampie, the authors find no evidence for a chiral correlation
length diverging faster than the spin correlation length. By a heuristic argument they extend
this conclusion to the case of uncorrelated £J disorder.

In an earlier investigation, Ney-Nifle e al [8] considered the random J XY model on
a one-dimensional ladder lattice, again in the Coulomb gas representation. This problem is
exactly solvable, or nearly so, for general disorder, and the conclusions drawn from it are
fully coherent with those from the two-dimensional model [9]. However, this model suffers
from the drawback that, in the Coulomb gas language, it has only exponentially decaying
electrostatic interactions (for reasons éxplained in that work), so that one may wonder if an
essential ingredient of the difficult two-dimensional problem has not been lost.

In the present work, we reconcile the requirements of exact solvability and truly long-
range interactions between the chiralities by studying the £J XV spin glass ona N x 2
lattice which is periodic both in the longitudinal and the transverse direction. We work again
in the Coulomb gas representation, and apply different boundary conditions. In section 2, we
show that, on this two-dimensional lattice with one compactified dimension, the electrostatic
interaction decomposes into two components. The first one is a “strong’ or charge—charge
interaction; it is nothing but the one-dimensional Coulomb potential, which increases linearly
with distance. The second one is a ‘weak’ interaction: it acts between transversely oriented
‘dipoles’ and decays exponentially with distance. We shall refer to them as the Coulomb
and the dipolar interaction, respectively. The Coulomb gas representation of the XY model
Hamiltonian involves, in addition to these two interactions, two supplementary ‘global’
terms that couple the system’s total electric dipole moment to the boundary conditions
imposed on the Hamiltonian. These extra terms have drawn a certain attention in the recent
literature [8—101, and they play again an important role here.

We are not able to solve the ground-state problem for the complete Hamiltonian.
However, we are able to conclude that in the large N limit, whatever the boundary
conditions, the ground state is one of the infinitely many ground states of the ‘strong’
Coulomb interaction combined with one of the global terms. The details of the proof (fargely
technical in nature) of this fact are given in appendix A. This set of ground states consists,
roughly speaking, of charge configurations in which the long-range Coulomb interaction is
screened away as much as possible by the formation of longitudinally oriented dipoles, as
exhibited in section 3. The degeneracy within this set is lifted by the weak interaction and
by the second global term, which are therefore responsible for the selection of the ground
state of the full Hamiltonian and for the energy differences between P, AP, and R boundary
conditions. Even though we remain unable to say which member of this set is selected as the
true ground state, we are able to describe (in section 4) the domain walls and domain wall
energies involved in passing from one boundary condition to another. Using the relation
between the correlation lengths and the finite-size scaling exponent of the ground-state
energy differences, we conclude in the final section 5, for the first time within an XY spin
glass with random £J disorder and having & non-trivial long-range interaction between its
chiralities, that the spin and the chiral correlation lengths diverge, for T — 0, with the
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same exponent v. We determine its exact value, v = iogg[(3 +24/2) = 0.5564..., in
appendix B. i

2. The tube: a compactified two-dimensional lattice

In this section we shall exhibit the Hamiltonians of a random XY model on a N x 2 square
lattice with periodic boundary conditions (PBC) in the transverse direction and successively
periodic, antiperiodic and reflecting boundary conditions in the other direction. We call this
lattice a tube (see figure 1). It can be viewed as a two-dimensional lattme of which one
dimension has been compactified.

2 4 wil | Plws,2) |mEl,,
T{za,2)
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Figure 1. Chiralities on a tube lattice. The bonds on the broken line are identical to the ones
on the lower foll line. The bonds have quenched disorder variables o and the plaquette centres
frustration variables p assomated with them. According to the definition {2.4), one has, for

example, po, 1) = (s, 1) + Tay = Fxody = g )/ ().

First we shall recall the same model on the more general N x M lattice and then
specialize to the tube. The effect of the compactification on the interaction will thereby
become clear.

‘We consider a random £J XY model where the spins are two-component unit vectors
whose angles ¢; (with a reference axis) take values in (—, 7). Two nearest-neighbour
spins, ¢; and ¢, have an interaction energy —J cos{¢g; — ¢; — my;), where J is a constant,
and the 7;; are quenched random variables that take the values

0 with probability 1
miy = - L2 2.1)
n with probability 3.
The partition function is
Zyy = f 1‘[d¢, exp [ﬁJ Ecos(@ & —m,,)} 2.2)
it (£}

The sum in the exponential in (2.2) runs over all nearest-neighbour bonds of the pericdic
lattice with the convention that in {i, j} the site j is to the right of i (for a horizontal bond)
or above i (fora vertical bond). In our notation the site vectors { = (i;, iy) have half-integer
components ix = 1, 3,..., 25t and iy = 3, 3., n=L

Since we are interested in the ground-state properties of the model, we shall replace
{(2.2) by the corresponding Villain expression, which is believed to be equivalent to (2.2) in
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the large-g limit [1, 2], and is easier to analyse. The Villain partition function is

ZV-[_ Hd¢:zexp[———z(¢: ¢y — 7y — 275”:])2} (2.3}

T {niy} g
where the n;; are additional dynamical variables. These n;; are integers and the sum on
them ensures that the integrand has period 2% in ¢ — ¢;. In the following, we set J = 2.
For each plaquette of the lattice, we define a frustration variable p,, with r = (x,¥) a

vector with integer components x = 1,...,N and y = 1, ..., i that [abels the centres of
the plaquetics, ‘
pr = Z(r ) -"Tu 2.4)
r = U' . R
e
where the sum is restricted to the bonds that define the plaquette r. In (2.4), €f; = —1

or 1 depending on whether one runs through the corners of the triangle (ijr) clockwise
or counterclockwise. The frustration variable is integer for non-frustrated plaquettes and
half-integer otherwise.

In (2.3) one can integrate on the continuous degrees of freedom. The algebra {cf
[1,2,8,9]) includes the transformation from the variables n;; to the new discrete variables
g, called the ‘chiralities’ of the plaguettes. The chirality g, runs through all integers (half-
integers) when p, is integer (half-integer). One shows that the chiralities interact via a
Coulomb interaction (which is why they are also called ‘charges’) and that they satisfy the
neutrality condition

Y g =0 2.5)

Recently, Ney-Nifle and Hilhorst [9] (see also [8]) extended the mapping of the XV
Hamiltonian onto a Coulomb gas Hamiltonian by including all the finite-size corrections on
a N x M lattice with various boundary conditions. We will now adapt their results to the
tube lattice, for which a simplified notation is defined in figure 1.

2.1. Periodic boundary conditions

‘We shall first consider the N x2 system with PBC in the longitudinal direction. We denate its
partition function by Zp. Starting from the more general model Zy [9], see equation (2.3),
we change variables from n;; to the chiralities g, which allows to perform the Gaussian
integration on the first set of variables, ¢;. Including all numerical prefactors in ZF, one

gets [9]
Zp=28 Ze—ﬂ%a(Zq,, ) (2.6)

{gr} Bum

where 8{-, -) denotes the Kronecker delta, The additional dynamical variables # and m run
over 2ll integers and the g, take integer or half-integer values, as mentioned above. The
Hamiltonian 7Fp, which will be the starting point of our considerations, reads explicitly [9]

Hp = 8z* (n+ E"I("”"'Z (xl))

x=1

: i
2m*N
+27 (m + = ;x(q'(x n+ e+ 2 )

A7) g Unalr — 1) @.7)

nr'
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We will briefly discuss its meaning. The first two terms are due to the finite system size.
They represent a coupling of the horizontal and the vertical component of the total electric
dipole moment, respectively, to the quenched disorder. In the third term, Uy 3 (R) is the
interaction between two charges:

U (R) = . eiXltThy) _ g 8
nm(R)y = — - v
Zka T smz(-"‘) + sin ( ry

with R = (X, ¥), ky = 0,2, ZE=N and p, = 0,2, ZW-D  The asterisk
indicates that the term (k, k,) = (0, 0} is left out of the summation.

Ind =2, Uyy (N,M - o0) is the two-dimensional Coulomb interaction which
varies as a logarithm at large distances [1,2]. For the tube, we will see in what follows that
the compactification leads to a decomposition of Uy, into two parts: a one-dirnensional
Coulomb interaction that increases linearly with distance and an exponentially decreasing
interaction, which is a remnant of a two-dimensional dipole—dipole interaction. The
appearence of the linear Coulomb interaction and its competition with the dipolar interaction
makes the mode] interesting,

To separate these two interactions in Uy 2, we combine the two chiralities of a column
X as ‘

+ =
= +
qx_ G} T 9.2 (2.9)
9x = qex1) ~ 9x.2)-

Introducing g and ¢ in (2.7) and evaluating (2.8) for N — co in these new variables,
we get

He = n+4Z +Z ‘*“) t quxngpu—x)

x.x'=1

+2R2N(m+ qux +H ) -+ n? Z gigtUF (x —x).
x.x'=l

(2.10)

We find that the charges g; interact via the long-range periodized Coulomb potential

1 ¥ -1

o= T
2N 2ek

76 sin’(3) 2.11)

X X
:—|X|(1—KN|) N—»oo,l—l—vuiﬁxed,ogl—ﬁlgl.

If |X| is negligible with respect to N, U7 (X) is the usual one-dimensional Coulomb
interaction, linear in X. If not, the term 1 — |X|/N becomes important and reflects the
symmetry and periodicity of the lattice.

The charges g interact via a short-range (dipolar) potential

1 e_ik;(x-x’)
X—X)=—— ) ———=—
Up ( = AN L1+ sin?(%)

V2

(2.12)
) ?(3 — 24/2)dE) N =00, |x —x'| fixed '
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where d(x, x") is the length of the shortest path between x and x’, taking into account the
periodic geometry. Furthermore, one obtains from the calculation that both potentials have
the symmetry properties
Uy (X) = Uy (X + N)
Up (X) = UF (= X).
Because of the range of the interactions, we will also call the fong-range Coulomb interaction
between the charges g7 strong interaction and the short-range (dipolar) interaction between

the charges ¢ weak interaction. In the large N limit, for convenience, we rewrite the
Coulomb interaction term in (2.10), using (2.11) and charge neutrality, as

N N 27[2 N 2
7Y iUt —x)=—n2 Y Ik —xlgia} -~;\,~(qu3) : (2.14)
x=I

x.x'=1 x.x'=1

(2.13)

Inserting this expression in (2.10) and writing out also the interaction potentials Ux
explicitly, we obtain eventually

Hp—. ~—-—---(n—|— qu +ZJT(IU) 2 ‘2 Z: (3 zf)d(xx’)qqu,

x=1 x.x'=1
) T4 + :ﬂ‘
+2n*N (m -+ T) —4m ( ) ;qu
N
-x* Y lx~xlgi gl (2.15)
x,xf=1

valid in the large N limit. The task will now be to minimize Hp with respect to the four
variables g7, g, m, and # in order to find its ground-state energy. This will be done in
section 3.

2.2, Antiperiodic boundary conditions

Passing from PBC to antiperiodic boundary conditions (APBC) means changing the sign
of the two horizontal bonds that belong to the plaquettes (N, 1) and (¥,2). Under this
change frustrated (unfrustrated) plaquettes remain frustrated (unfrustrated). Thus the only
modification needed to obtain the Hamiltonian ‘HAP for APBC s to replace my 1y by my. y+
in the first term in equation (2.15), i.e. to add 1 5 in the expression between parentheses in
that term.

2.3. Reflecting boundary conditions

One obtains the Hamiltonian Hp for the XY spin glass on an N x M lattice with reflecting
boundary conditions (RBC) in the horizontal direction and PBC in the vertical direction by
replacing the horizontal interactions in one single, but arbitrary column, say N, by

(i + & — 2ny; — my)*. (2.16)

This amounts to reflecting the spins on one side of this column with respect to the reference
axis., The ensuing modifications in passing to the Coulomb representation result in [9]

12 + :,.[21
Ze=2Z§Y Y e s ([ > a mf!-?—ﬂ-] mod 2, 0) 2.17)

{gr} #m
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with
=7 qqrU(r — 1’} , | (2.18)
e

and r = (x, y) labels the centres of the plaquettes on the N x M lattice as before. We do
not recal] the explieit, general, form for the potential Up here, but rather use the variables
g7 and g, defined in (2.9) and give the explicit expression of Hjy in the case of the tube
lattice:

N
Hg = x* Z gfgt Uz (x — x'y + 22 Z g7 g Ug (x — x") (2.19)
x,x=1 x5 =
where }
N X
UQ‘(X):-E-(I-%) N—>oo,|N—|ﬁxed,0§E§—|§l
(2.20)
- ' \/5‘ d(x,x} ' o
UR(x—x)=—(3—2ﬁ) o (x, x) N — oo, |x —x'| fixed
where o (x, x’) = —1 if the shortest path between x and x’ crosses the bond .TI' 2 (or :rr 1, and

o(x,x") =1 otherwise. The interactions U and Uy differ furthermore in thelr symmetry
properties from those of PBC in that one has now

UE(X) = —UEX + N) (2.21)

i.e. antiperiodicity of the interaction potentials.

2.4. The Hamiltonians in terms of electric field erergy

In this subsection, we rewrite the strong interaction part of the Hamiltonians (2.15) and
(2.19) in terms of an electric field E,:

x
E.=Eo+ Y qy7. (2.22)
x'=1
E; is the electric field between x and x + 1, and Ej is a constant background field whose
value will be set later in such a way that the volume sum of the energy density E, gives
the Coulomb energy of the Hamiltonians. The advantage of this rewriting is clearly seen
in appendix A when properties of the ground states of the Hamiltonians (for large N) are
proven: E; is a local variable, whereas Ex, 1 45 Usip (x — x*) involves all columns of the
lattice. To determine the effects on the system’s energy when a charge qxn is changed in
a given configuration is much easier in terms of the local variable E,,, as is manifest in
appendix A.
Squaring (2.22} and summing over x, we get

ZEZ._NEZHEOZqu +ZZ qu,qx

x=1 x'=1 x=] xfem] :c';l Y (223)
= NE(, +2E, Z(N x+ Dgf + Z [N + 1 —max(x’, "V lgtql.
z=1 F=1 x'=1

Using the identity

: , _
max(x’, x") = —= + - (2.24)



4292 M J Thill et al

and rearranging terms leads to

ZEZ = N[52 +2E, qu (iq;*) } (2Eo+Zq, ) 3 - Dgi

x=1 x=1
N N I !

DRI

giqh. {2.25)
.’:I_ l xl.l

The value of the constant background field Ej is obtained by setting

2r? E E? = n? Z 4T gt UsR(x — ). (2.26)

x=] x,x'=1

In the large N limit, this amounts to comparing the expression in (2.25) with the Coulomb
interaction part of (2.15) and (2.19) (after insertion of (2.20)). This gives

12 21
m+ %ﬁy“ for Hp and HAP
Ey = L& (2.27)
) Z gf for Hg
x=1
and the Hamiltonians read hence
Y f
Hp.ap =271'2in n? Z G- 22y
x=1 x,x'=1
837.'2 _ T, 1) 1
+T A r qu + Z TR + '2-5AP (2.28)
Hr = ZTZZZEZ { 2 Z (3 — 2/2)% g (x, Vg g,
x,x=1
where
San 4] for PBC (2.29
Sl ' for APBC %)

+ with, from (2.6) and (2.17),

N
qu’ =0 for Hp and Hap
*=l : (2.30)
12 + 7
qu meod 2 = N mod 2for Hg.
x==]
Having established the Hamiltonians for the different boundary conditions, we are now

ready to determine those properties of their ground-state configurations that are sufficient
to calculate the typical energy difference between the ground-state energies for N — oo,

3. The ground states for the different boundary conditions

We summarize the problem to which the preceding sections have led. Each of the three
exptressions (2.28) should now be minimized with respect to the variables », {E,}, and
{g;}- The {E;} are defined in terms of m and {g} by (2.22) and (2.27), and the {g;"} and
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{g;} are defined in terms of the original charges {g,} by (2.9). The variables m and » are
integers, and the {g,} are half-integer or integer according to whether the plaquette r is or
is not frustrated.

The ground states of the Hamiltonians (2.28) posscss in the large N limit the following
properties:

(1) The electric field satlsﬁes [Ex[
field takes values |Eq| <

(2) The charges g1, q(x 2 take the values 0, =3.

3) On doubly frustrated colummns, the charges gy, 1y and g 2 are equal if and only if
|Ex-—l| - '- .

Thesc properties of the ground states, for N — oo, are proved in appcndix A, Property 1
indicates that the system’s ground state is within the set of states that minimize the electric
field (i.e. the Coulomb) energy. For PBC and APBC charge neutrality implies Ey = Eg (cf
equation (2. 2‘2)), whereas for RBC ant1per10d1c1ty of the strong interaction potential leads to
Ey = —Ey= z-1 g7 (from equations (2.22) and (2.27)). Let us just note here that it
was conjectured in [2] that, in the ground state of frustrated X ¥ spin systems, the chiralities
(charges) g, are likely to be zero on non-frustrated plaquettes and take the values :l:-% on
frustrated plaquettes. The above property 2 shows that, for large N, this is indeed the case
for the tube lattice. -

We will now construct the set of states that have properties 1 and 2. 'We start placing
charges g,y = 0, :|:52 successively from x = 1 to x = N, minimizing the local electric
field energy dens1ty EZ at each step and knowing that it changes by a half-integer amount
{with qx = +1 2) on a column with one frustrated plaquette and by an integer amount
(with g =0 for E,—; =0 and g} = 0, +1 otherwise) on a column with both plaquettes
frustrated (see figure 2). ’

S % for x = 1,..., N. The constant Eackground

B et o AL S R R e e A Ak g W RN N S e ey e b ALEE ES R M e e R e b kA

- +1 - -+ ]+

L
P

L~

1t -
\
A
/

&

+
2=

}I__l L -
= 2 ] z

Fignre 2. Construction of a state that possesses properties 1 and 2. We start placing charges
(x,yy Trom the left to the right. We proceed in a way that the local electric field stays as close
to O as possible. The signs indicate plaguettes with charges :I:%. Plaquettes with no sign are
charge-free (unfrustrated}.

|
o

Having thus obtained a state that has properties 1 and 2, we see that it is always possible
to partition the non-zero charges g ,; into dipoles as in figure 2, grouping together two
successive charges of opposite sign along the x-axis such that outside the dipoles the electric
field is zero. (There is one exceptional case (see figure 3): for Hy and Ep = -;- the iast
and the first charge placed are not part of any dipole, but of the same sign to take account
of the antiperiodicity of the potential Ug (X) = —UZ (X + N), respectively Ey = —Ey, as
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mentioned above.) As one sees from figure 2, e.g. from the dipole containing charges on the
columns x; and x{, dipole reversals do not change the Coulomb (i.e. electric field) energy
of the system. So, the ground state of the system is found within a set consisting of chains
of dipoles, satisfying properties 1 and 2, degenerate in Coulomb energy. The possibility
of columns with two identical charges leads to the partition into dipoles not being unique.
Property 3, however, introduces a further constraint on the set among which one finds the
ground state. Furthermore, one can easily convince oneself that this latter property implies
that one can reach every state that satisfies properties 1 to 3 from amy other such state, by
reversals of dipoles, for any given partition. In particular, the ground state of the system
differs, for large N, from a state as constructed above (with the additional constraint from
property 3) by a reversal of dipoles.

T L o N e i R s

+-a—
1t

. 3

Figure 3. Example of a state with properties 1 and 2 for Re¢, while Ey = % For RBC, proceeding
in the construction as described in the text, the last charge to be placed is of the same sign as
the first. This is obvious from equation (2.27), Ey = —% ngl g_;“, which indicates that, in
general, there is a surplus of two charges g,y Wwith opposite sign to Ey = :E:% (here Ep = é),
to take account of the fact that for Rec the potentials UF are antiperiodic (see (2.21)). But still
all charges, but the first and the last one, can be grouped into dipoles as anngunced in the text.

The exact ground-state configuration remains unknown, but we know that it minimizes
the Coulomb energy independently of the other energies involved and have characterized
the set of Coulomb energy ground states. (Let us just point out here that, when passing from
PERC 10 REC, one conserves by virtue of (2.27) and (2.30) the property Eo = 0 or Ey # 0 for
the ground states at both boundary conditions, due 1o the fact that (m)}? + =) /2 stays the
same (see also appendix A, especially equation {(A.9).) So the Coulomb energy stays indeed
the same.} The only remaining degrees of freedom in this set are the directions of single
dipoles. The degeneracy is lifted by the other terms in the Hamiltonians of equation (2.28),
which fix these directions. The amount of Conlomb energy of the system with the different
boundary conditions being the same, it is the effect of these other terms that give rise to
the difference between ground-state energies when one varies the boundary conditions. We
address this issue in detail in the following section. In spite of the fact that we ignore the
exact ground-state configurations, the above properties suffice to analyse and determine the
ground-state energy differences for N — co.
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4. Boundary conditions and-ground-state energy differences

4.1. Generalities

There is a general relation between the finite-size scaling of the emergy difference,
AEW T2 py-y (where J is the energy scale), of the ground states of a system for
different boundary conditions and the corresponding correlation length, &(T), at a finite
temperature T. The correlation length £(T°) is set by AE®) ~ kgT, hence

T —1/y
E(T) ~ (‘j ) -

(Let us just note here that the energy difference may be either concentrated in 2 domain
wall or associated with a continuous variation of the order parameter.)

In the Villain model, we may study the spin—spin correlation and the chirality—chirality
correlation by applying APBC and RBC [5, 8,9]. So we have to calculate

T —0. 4.1

AEP =EP -E" N-oo @2
AEM = g™ _ g N = o0 ’

where EF(.N ), Ei‘g), and E(N ) are the ground-state energies under P, AP, and R boundary
conditions, respectively.

In this section and in appendix B, we will call a dipole with charges g,y and ge.y)
stanted, if y %= ¥, and horizontal, if y = y’. (With this definition, the slanted ones include
the vertical dipoles.) As the probability for a plaquette to be frustrated is the same for all
plaquettes, a dipole is as likely to be slanted as horizontal.

Furthermore, writing U/~ for Up at PBC (2.12) and for Uy at RBC (2.20), the weak
(dipolar) interaction U/~ (£) has the property

. o -
U@ > . UT() , : _ (4.3)
P=i+1

for all boundary conditions, so that we may approximate its effect by restricting the
interactions of each non-zero charge g~ to those with its two non-vanishing neighbouring
charges. Upon renumbering the non-zero charges g7 on the frustrated columns by a new
index s = 1,2, ..., N; (where N, is the total number of the frustrated columns with non-zero

gy ), we can ﬁnally rewrite the effective weak (dipolar) mteractlcm as

> grapU G —x) = Z UsGy g + UO) Z (@) (4.4)
x,x -
"~ where gn+1 = g1 for PBC/APBC and gy,41 = —q; for RBC. The charges ¢, take the values

il and +1, and the U; are independent quenched random interaction constants. Since in
the set of states that we consider the Coulomb energy is boundary condition independent,
we will deduce the energy differences, AE W and AEy ) (N — o), from (4.4} and from
the global spin wave term in (2.28). The large N limit is self-understood in what follows.

4.2. Antiperiodic boundary conditions

The actual ground state minimizes the second and third term in Hp and Hap, equation
(2.28), within the space of degenerate ground states of the Coulomb energy, characterized
in the preceding section. The second term, rewritten in equation (4.4), is the weak

interaction between the g . In appendix B we show that its lowest-lying-excitation lies
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typically an energy amount ~ JN 7 above the ground state, and determine the exponent
Ye = logs (3 +2+/2) = 1.7972.... The third term is

B2 Ty \ .

N n+§;qm)+§—2—n_ in Hp

82 1 Ty 1Y .
Ft3aen+ D52 45) e

where we have used the neutrality condition to write 3 g7 = 23, g¢.1)- The terms in
{4.5), of order N~1, have their origin in a global spin wave, i.e. of wavelength > N, which
helps the system to adjust to jts boundary conditions when there is a rotational mismatch
{cf [8,9]).

One might wonder if it is always possible, by choosing » J'\Pmpeﬂy, that the terms in
(4.5) vanish in the ground state in Hp and/or Hap. As n+ Y, =2 € {0, :’l:1 £1,...},
this depends obviously on the number of non-zero charges gy, 1)- Hence we have two cases:

(i) the number of frustrated plaquettes (x, 1) is even;

(ii) the number of frustrated plaquettes (x, 1) is odd.

Correspondingly:

(4.5)

1 & _
5 Z‘?(x.l) €(0,+L,£1,...}  case )

4.6)
= Zq(x pelEl,£3,..)  case (i)

x—]
We investigate these cases further.

() Even number of frustrated plaquettes (x, 1). Given the set of 7 13 and possibly
reversing a sequence of dipoles as in appendix B to get -;— et 2, Ty /27 integer for
PBC and half-integer for APBC or vice versa, the terms in (4.5) vanish for both Hamiltonians
by a proper choice of n. As there is a difference of % in the term in parentheses in (4.5),
the ground staies of Hp and Hap differ by a reversal of a sequence of dipoles containing
an odd number of g,y # 0, Le. a sequence of dipoles among which an odd number is
slanted. Hence we obtain, reinserting J,

AE ~ N> case (i) %))

where the sign indicates that either state, at PBC or APBC, has the lower ground-state energy.
(ii) Odd number of frustrated plaquettes (x, 1). Here, from (4.6), the terms (4.5) in
Hp and Hap are always non-zero and the optimal value of n will give an energy Ja2/4N
irrespective of the directions of the dipoles. These will thus be determined by the weak

interaction only and be the same for both boundary conditions. The energy difference is
hence

AEQ = case (i) ' (4.8)
in this case.

4.3. Reflecting boundary conditions

The ground states at PBC and RBC minimize the second and the third term in Hp and the
second term in Hg, equation (2.28), within the set of states characterized in the preceding
section. So, again, one has to distinguish between an even and odd number of g1y # 0,
when calculating the typical ground-state energy difference.



XY spin glass on a tube lattice 4297

(i) Even number of frustrated plaquettes (x, 1). We saw in section 4.2 that the term
for PBC in (4.5) vanishes in the ground state of Hp and that, for half of the samples, one
finds the ground state at PRC by minimizing the weak (dipolar) interaction. If one changes
to RBC for this half of the samples, while keeping the PBC ground-state configuration, one
will almost always be able to lower the energy (note that the sign of the bond that passes
column N, which is almost never the weakest one, has changed (1)}: one just has to reverse
a sequence of dipoles starting at column N in such a way that only one of the weakest
bonds is broken. For the other half of the samples, the cancellation of the global spin wave
term implies a reversal of a sequence of dipoles in the configuration after minimization
of the dipolar interaction. For these latter samples, when one changes to REC, one has to
reverse again the same sequence that was reversed to get the ground state at PBC. In both
cases, this leads to

AE® ~ £JN7> case (i) . 4.9

for the difference in ground-state energies. The minus sign applies for the first half of the
samples, the plus for the second half.

(iiy Odd number of frustrated plaquettes {x, 1): The global spin wave term never
vanishes in PBC, so that -

AEY" ~-— N-1 case (if) - (4.10)

neglecting a possible contribution of order JN ),

5.- Conclusion

We have studied the X¥ spin glass with +J bonds on a tube lattice. This systern has
both a continuous {spin) and a discrete (chiral) symmetry, and hence two order parameters
play a role. Our purpose- was to determine the divergence, for T — 0, of the chiral
and the spin correlation lengths, via the finite-size scaling of the ground-state energy
differences under different boundary conditions. In the presence of two symmetries, the
usual single-symmetry relation between the finite-size scaling exponents of the ground-
state energy difference and the correlation length has to be extended in a non-trivial way.
Nevertheless, the spin correlation length exponent y, (see equation (4.1)) is given by
the energy difference when one passes from periodic to antiperiodic boundary conditions,

_—
namely (AE}f,f}",))2 & ~ JN=¥, New boundary conditions, reflecting ones, were introduced
[5] to determine the chirality correlation length exponent y,.
The difficulty in performing such an analysis on a general N x M lattice is that cne does
“not know how to conmstruct the ground states of the disordered systems. The tube lattice,
of this work, however, just as the ladder lattice studied earlier [8], allows for a precise
theoretical analysis of this relation. In contrast to the ladder lattice, the tnube lattice still has
long-range interactions between its chiralities, and is therefore closer to a two-dimensional
system.

We first apply the well known transformation [2,9] of the XY spin glass into a Coulomb
gas, a system of chiral variables (also called charges). The resulting effective Hamiltonian
can be cast in the form (2.28) where it is the sum of three terms:

(i) a one-dimensional Coulomb interaction, linearly increasing with distance, between
charges qr1 . 45, .-.,qF; in (2.28); this term has been expressed as the volume sum of the
energy density of the electric field E,;
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(ii) a ‘dipolar’ interaction that decreases exponentially with distance between the
IR Y RIRY T T

(iii) the energy of a spin wave needed to match PBC or APBC (but absent under RBC),
and whose wavenumber depends on the total electric dipole moment.

The third term disappears in the thermodynamic limit. Its relevance for a finite-size
scaling analysis was first pointed out by Fisher et al [10]. Moreover, the three terms are, on
the one hand, coupled by local constraints, that link the allowed values of g7 and g7 with
the fixed values of the ferromagnetic or antiferromagnetic bonds m;; between the spins on
the lattice, and, on the other hand, by a giobal constraint on the total charge (zero for PBC
and APBC, and even or uneven for RBC). Taking these constraints into account, we identify
the low-lying excitations of the three terms, respectively:

(i) Coulomb excitations that cost an energy of order J;

(i1} chiral excitations, obtained by reversing a sequence of chiral variables, that cost an
energy ~ JN=¥ with y, = 1.7972 .. ;

(iif) global spin waves that cost an energy ~ JN™L,

The £J XY spin glass on the ladder lattice [8] consists of both interactions (ii) and (iii).
Due to the additional long-range interaction (i), the tube is closer to the twe-dimensional
maodel.

In spite of the number of interactions in competition, we were able to characterize
and delimit the set of charge configurations, within which Hes the ground state. In the
configurations contained in this set, the charges take the values i% on the frustrated
plaquettes and zero on the others, and form a chain of dipoles.

We now give a summary of our results, and recall numerical results for comparison.
When changing boundary conditions from PRC to APBC, or RBC, it is the excitations (ii)
and (iii) that give both energy differences, AEﬂ) and AE&N ). 'This implies the same
conclusions as in [8]: First, the ground state obtained with P boundary conditions can
adjust to AP boundary conditions via a chiral excitation, so that

—
WEDR "~ INTE oy =17972.... (1)

The last equation contains no reference te spin waves and means that ¥, = y.. Secondly,
passing from P to R boundary conditions releases a global spin wave (as was first observed
by Kawamura and Tanemura [5] in d = 2} in half of the samples, but does not do so in the
other half. .
In 4 = 2, Kawamura and Tanemura performed a numerical analysis of the different
ground-state energies of the cosine XY model. They find, as N — oo,
—i
(AE;’E) ~aN™% 3, ~084
—_—2

(5.2
5 ;
(E!({N) . e,({N) o~ BNV 4 O(NF) Ve ~ (.38 '

where @ and b are constants, and a new quantity, namely
e = AEY" — min0, AEXY)) (5.3)

has been introduced. Thus, they get two distinct exponents y, and y,, with v, > y., and
conclude that the chiralities order on a Jonger scale than the spin vartables.
For the tube, upon collecting our results (equations (4.7)—(4.10)), we get
—iy2 B )
(eg’) ")  =Llr¥NT L OWNTF) (5.4)



XY spin glass on a tube lattice 4299

i.e. the R boundary conditions probe a global spin wave term proportional to N™1, If
we now conjecture on the extrapolation of our results to d = 2, then we expect for the
quantities of equation (5.2) that AEap would yield a chiral exponent y, as in (5.1) but with
a smaller value {since y, should vanish at some, still higher, lower critical dimension); and
that eg would yield the spin wave exponent 4 — 2 = (. Instead, in contrast, Kawamura
and Tanemaura interpret their simulation according to (5.2). We expect that simulations on
larger 24 systems will confirm our scenario.

Appendix A.

In this appendix, we prove that in the large N limit the ground states of the system for the
different boundary conditions possess the properties 1 to 3 announced in section 3. In the
calculations, we write the expression of the weak (dipolar) interaction in its form at PBC/APBC
(equation (2.12)), with again J = 2, The arguments are nevertheless readily rewritten for
RBC, including the appropriate factors of o' (x, x") (equation (2.20)). Furthermore, we neglect
the global spin wave term O(1/N) that appears for PBC/APBC. Upon proper choice of n, this
term contributes at most 72/2N to the ground-state energies at PEC/APBC, which is small
for N — ©0, in comparison to the other energies involved.

In preparation of the proofs of the ground-state properties 1 io 3, we show, in a first
step, that

(i) in the ground state, the charges g; take values |g;| £ %,
and, using (i), in a second step, that

(ii) in the ground state, the charges g take values |g.7] £ 1.

Proafs of (i) and (i)
(i) In the ground state, the charges g take values such that | ] £ < . Let us look at
some state with charges g-*® such that

g = max{lg;°l} 2 2. A o (A1)
Let g7~ 0 be a charge with |g;*°] = ¢g. For reasons of charge reversal symmetry, we may
take g, 0 positive without loss of generality.

Consider now the state in which qx‘"'“ is changed into qx;-o_— 2, while all other charges
g7 and all charges ¢;}° are kept unchanged. (Note that, by an appropriate change of g,
and g,2). one can add an arbitrary multiple of 2 to some charge g; without changing ¢;
(see (2.9)).) The difference in energy AE between the (final) state, with q;“"’ changed, and
the initial state can readily be calculated. As the charges g are unchanged, it comes from
the difference in weak interaction energy only. For q;}'o 2 2, one finds

£ n* (g - 2)2—q]+£x[ =(g—2]2) (@5 + DB —2v2)

8 =0
ﬁ A2Z)
= ?nz[ —4g D +4) (grh + DG~ 2v2) ]
>0
We have ' )
4% (geis + 43 - 203 2| <8q|) G- 2~/5)-"! ' (A3)
¥>0 =0
and thus, somming the geometric series and using g 2 2,

AEZ %nz [-4@ — 1D +4(2 - 1)4] < 0. (A4)
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So the final state is lower in energy than the initial state. Hence a state, in which ¢ 2 2, is
not the ground state.

(ii) In the ground state, the charges g, take values such that |g7| £ 1. Let us take
some state with charges g;° = 0, :i:1 +1, :n‘.:q Be n the number of charges :I: with
r > 0. Suppose for the moment that n < N. There exists hence a sequence of charges
gz gt o gnty = +3 (1 £ ' £ n) that is enclosed between charges g ° of
absolute value £ 1 (ie. [g “_[[ Iqx(,+,; 1.

Consider now the state in which all charges g7% = i% in this sequence are replaced
by F1, while all other charges g;® and all charges g; are kept unchanged. As in (i), the
difference in energy AE between the (final) state, with the changes, and the initial state
is due to the difference in weak (dipolar) interaction energy only. The difference AEy in
weak interaction energy, coming from the self-interaction terms in the sum, is

2
AE = —2%::2;1’ (A.5)
the one from the nearest-neighbour interaction terms is of absolute value
2 9 3
|AE| £ 2%31’2(3 - Zﬁ) [(n’ - I)Z +2- 3 I:I
2 1
+2§7r2(3 —22) [(n' -Dz+2 -;: - 1} (A.6)

while the energy difference of ail other terms is of absolute value

2. 2
[AE;] £ 4£ 2 $=2v2) 9 22" 9 +4ﬁn’2—(3 2v2) 3n
8 1—-(3- 2f)4 87 1—(3-242)4
To obtain the last inequality, we have substituted for all charges g7, but the ones in the
sequence, the maximal possible absolute value -% and taken all terms in the sum to be
negative in the initial state and positive in the final state (which is obviously an upper
bound for the energy change, but impossible to realize). The overall energy difference is

thus
2
AE§-2£32H'+£n2<3-2«/§)[5(n 1)+8]+12‘/_ 2_3-22°
8 8 8 1-(3~ 2[) i~

= __“/:xz[n (29 — 208/2) — 9 4 6+/2] < 0.

Again, the energy of the final state is lower than the energy of the initial state. If n = N,
a similar reasoning (with #’ = n = N) leads to the same conclusion. This proves (ii). O

(A7)

‘We are now prepared to show that the ground state has the properties 1 to 3, announced
in section 3.

1. In the ground state, the electric field satisfies |E.| & % The constant background field
takes values |Eg| & IE We first note that the electric field is constrained to be of absolute
value < 1 for the ground-state configuration. This can be seen as follows. From (2.28), we
see that minimization of the Coulomb interaction part of the Hamiltonians means minimizing
the mean square value of the local electric field E,. This leads for all Hamiltonians to

12 21
0 if TV TN 0d2 =0
Ey = (A9)
1 12 21
M mod2=1

+= if
5 i
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for the constant background field Ep. The electric field, Ey, should be locally optimal, that is
stay as close to 0 as possible. For any given state with given sets of charges {g7} and {g]},
one can go successively through the system, from x = 1 to x = N, changing, whenever
necessary, the charges g in such a way that the value of the electric field is bounded in
absolute value by 1 in the final state: at every colomn with no frustrated or two frustrated
plaquettes, the change in electric field can be bounded to be 0, =1 by an appropriate change
of g7, if necessary, and to be :l:% on every column with exactly one frustrated plaquette.
(By the definition of g} and g7, equation (2.9), one can add an arbitrary multiple of 2
to some charge g7 without changing g7, by an appropriate change of g1y and gx2).)
Whenever one encounters a column xp, during the above procedure, where the electric field
jumps to a value |Ey | 2 % one changes g;} by the appropriate amount, as well as the next
non-zero charge g, say at x), by the opposite amount (to conserve charge neutrality). By
the definition of the electric field, cf equation (2.22}, every time one changes the charges
at xo and x;, only, the electric field remains unchanged on columns x < xp and x = x;.
So in the end, while keeping the set of charges {g;} fixed, the value of the electric field
is bounded in absolute value by 1. In particular, the final state is lower in energy than the
initial state. '

Let us now take a charge configuration of the system (with charges g%, g; %) such
that the electric field jumps, say at column xo, to a value [E;,| = 1, and stays at this value
until column x} (> xo), where one finds hence the next non-zero charge q;" 9, Consider the
state in which g;}»® is changed by an amount of 1 to some value {E.| £ aud q +0 by the

opposite amount (to conserve charge neutrality), while keeping the charﬂes gh® (and g
on all other columns fixed. We observe that, from (2.22), the electric field is unchanged
for x < xp and x 2 x} and that by the definition of ¢ and g;, the charges ¢_* and

q;,,'o changed. Anyhow, from (ii), the absolute value of the charges g; can be taken to be

bounded by 1 in both states, as otherwise the energy of the state can still be lowered. The

difference AEF in strong interaction énergy between the final state and the initial state is
AET £ 2723 |xp — xp| (A.10)

while the difference AE in weak interaction energy is bounded by

|AEf1.§z?f [1+2 Y 4 G + )3 - 242 )*]
§=0
V2, .
+2--n 1+2|) g, %50, +az2) 3 —2+2) (A.11)
=0

(The factors 2 in the last inequality stem from the fact that both the energy of the initial
state and that of the final state enter in the dxfference) Hence we get for the total energy
difference
'\/— '\/?-4 - 171"2
2
i.e, the energy of the final state is lower than that of the initial state. Thus IE | £ -‘- for the
ground-state configuration.

2. In the ground state, the charges qu.1y G2 take the values 0, i From (ii) and
property 1, the absolute values of the charges on the plaquettes in the ground state are
bounded by property 1. In the case that E,_; = 0 in the ground state, it is easy to see from
(ii) and property 1 that the charges g(x,1), g2y on the plaquettes of column x are of value
0, i—— -

AE £ 27 23 T H4g

1 +2(v2- 1] < - (A.12)
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Let us thus consider the case [E;.;| = % If there is at least one frusirated plaquette
on column x, it is again obvious from (i) and I that g 1y and g 9 are of absolute value
= % Suppose now that there are two non-frustrated plaquettes on a certain column xg.
From what we have stated at the beginning of this paragraph, it could be that there is a
charge &1 on one of the plaquettes. Let us furthermore suppose that there is a sequence of
columns xg, Xo + 1,7+ -, xo + 1 — 1 that carry charges g, of absolute value 1.

If the number n of charges g in the sequence is even, consider the state in which all
the charges g, .9, 1. ** ~954n—1 € changed to O (this is possible as it conserves charge
neutrality, as one convinces oneself with the help of property 1). The absolute value of
the electric field is the same in both the initial and the final state, so that the difference in
energy is again due to the weak interaction oaly:

AE<—— 2y 4422 8 72 &—-—f-—n a2 +2 — 3]<0 (A.13)

8 1—-(3-2+2)
and the energy of the final state is lower than that of the initial state.

In the case that n is odd, one can take n = 1 and [g;_;[,lg;,,] S 3 without loss
of generality, in view of the preceding paragraph. Suppose first that one of the charges
@r_j:9ry; 18 of absolute value -% in the ground state, say g, and say |qu1.)] = é Let
us compare the energy of this state with the one in which g; is changed to 0 and geeyy.1y
replaced by. —g41,1y (note that g7 + geeq1,1y) = —gxy1,1y from 1, so that the absolute value
of the electric field remains unchanged and charge neutrality is conserved). Using (ii), the
difference in energy is

V2, _ o —o .-
PVERL [~ 42097905 + 1950470 + 14534780 B — 23)

+2l =g 30513 =2V +2 Y lar Ol + 45513 - 2v2)°

51

+2-2 Z qu+1 [[qx+1 -5 + qx-!—I+s (3 - 2\/5)‘?:[

g1

NG 1 (-2 _ V2
< X2y _ - wooeve 2_
< 81r|: 1+ 8@ 2J5)Z+3 2J§—2] '( 17+ 124/2) < 0.

{A.14)

Again the final state is lower in energy than the initial state. Secondly, if ¢, , =g, =0,
there are again two possibilities. Either there are only non-frustrated plaquettes on the
columns x — 1 and x + 1, or, on at least one of them, both plaquettes are frustrated, say at
x + 1. In the last case, one has gf =>2qu41,1) = —24(+1,2) from 1; hence changing g,
to 0 and gez41,1): Gz+1.2) 0 —G(x41,1) —Gx4+1,2) COnserves charge neutrality, the absolute
value of the electric field and does not change ¢, ; = g.,; = 0. Using (ii), the energy
difference between the final and the initial state is then

V2 <~ _o - -
AE S ?nz[ = 1+23 " 1g7 llgrs + qeisl 3 = Nﬁ’}
7 1 o _ . (A15)
2 (3 24/2) 2
S—erI: :|=—x2—15+1oﬁ <0.
S W) g 7 ( )
In the case that g1,y == Gz-1.2) = da+1.D = G(x+1,2 = 0, there is a column x — 5 or

x 5 such that ggev1) = Gz-0,2) = Gx10.) = Gietozy =0 for all 1 < o < s and that one
of the charges gex—s.1y: Gex—s.2)s G(x+s.1) Dr+s.2) is non-zero. Considerations analogous to
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the ones earlier in this paragraph lead again to the conclusion that a state in which there is
a non-zero charge on a column with two non-frustrated plaquettes is not the ground state.

So in the ground state, the charges g(.,13, 9¢x,2) take the values 0, :I: only. -

3. In the ground state, the charges g1y and g2 are equal on a’oubly Jrustrated
columns, if and only if |E._y| = % Following exactly the same lines as for property 2,
one shows that a state in which g1y = —q(x.2), i.e. |95 | = 1, on some doubly frustrated
column xp, while |E; 1| = %, is higher in energy than the one in which gy, 1) = G2y
ie. |gy, =0 (the appropriate change of some other charge, as in property 2, to consetve
charge neutrality, is tacitly understood). It is evident from property 1 that, in the ground
state, G, 1) = —q(xy.2y ON Some doubly frustrated column xg, if Ey—1 = 0.

Appendix B.

We calculate the typlcal energy change in a tube of length N, in the limit N — oo, when
a sequence of dipoles is reversed to adjust to APBC or RBC from PBC, as in section 4. This
amount of energy is related to the typical length of the longest interval that contains no non-
zero charges g between two such (non-zero) charges. The reversals that are effectuated in
section 4 do not necessarily involve the longest of these intervals because of the constraints;
" one must not break up a dipole, or in certain cases has to reverse not just any sequence,
but one that contains an odd number of slanted dipoles. Nevertheless, these reversals will
still typically involve intervals that are of the same order as the longest interval.

Since each plaquette is frustrated with probability % independently of the others, a
tube of length N will typically contain ﬁN non-frustrated columns, éN with one frustrated
plaquette, and %N where both plaquettes are frustrated. From property 3 of the ground-
state configuration, half of the doubly frustrated columns will typically contain charges that
belong to the same dipole and the other half charges that belong to two different dipoles.
This is due to the fact that at a given column E, = O or E; = i% (ie. gt integer or
half-integer) with equal probability; in the first case, one has g, = =1, and in the other,
g; = 0. So, there are more charges g = 0 than there are non-frustrated columns. Since
it is typlcally half of the doubly frustrated columns that give g; = 0, we see that, again
typically, BN of the colummns carry a non-zero charge g, , while N of the columns are
neutral in g. So the number of intervals between two non-zero charges gy, that contain
no other such (non-zero) charge, is sN The probability p(£} for the two subsequent non-
vanishing charges g, to be at a dlstance £ (ie. to be separated by an interval of £ — 1
columns containing no non-zere charge g;) is

8

Let Py(m) be the probability distribution for the length m of the longest one of these
distances. Obviously, Py(m) equals the probability that all %N intervals have length £ < m,
minus the probability that they all have length £ £ m — 1; explicitly

pen=[ ] [Ero] <[ ()" o

When N is large, Py(m) will be peaked around some large value of m. Its scaling form
can be obtained if one transforms from m to m’ according to

m=ylogN+m' (B.3)

-l g
ple)y = (8) £=1,2,.... - B.1)
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with ¥ to be determined. Indeed, upon using (B.3) and (B.2), one finds
Puim) " 51 —xY)  with  x =t (VW (B.4)

This shows that Py (m) is effectively non-zero only for argument values

_ m= log% N+01) (B.5)

and that the appropriate scaling limit reads
N—oo  mfinite, fixed  and  y =1/log}. (B.6)

Having thus obtained the typical length
- ll‘c’)gg "%’ ®B.7)

of the longest interval, we are able to determine the typical energy change of the mentioned
dipole reversals. From the effective weak interaction (4.4) we deduce that the typical energy
change due to such a reversal is of order ¢U (n), where

Um) =3 — 2/2)" (B.8)

is the energy change when breaking up a bond at distance / and the constant ¢ is of order
unity. The exponent y, is then cobtained from the defining equation

cU(Q)N™Y = cU(m) (B.9)
which gives
Yo =logs(3 +2v/2) =1.7972... (B.10)

for the expenent of the chirality—chirality correlation length.
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